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Langevin equations with multiplicative noise: Resolution of time discretization ambiguities
for equilibrium systems

Peter Arnold
Department of Physics, University of Virginia, Charlottesville, Virginia 22901

~Received 1 December 1999!

A Langevin equation with multiplicative noise is an equation schematically of the formdq/dt52F(q)
1e(q)j, wheree(q)j is Gaussian white noise whose amplitudee(q) depends onq itself. Such equations are
ambiguous, and depend on the details of one’s convention for discretizing time when solving them. I show that
these ambiguities are uniquely resolved if the system has a known equilibrium distribution exp@2V(q)/T# and
if, at some more fundamental level, the physics of the system is reversible. I also discuss a simple example

where this happens, which is the small frequency limit of Newton’s equationq̈1e2(q)q̇52“V(q)
1e21(q)j with noise and aq-dependent damping term. The resolution doesnot correspond to simply inter-
preting naive continuum equations in a standard convention, such as Stratonovich or Itoˆ.

PACS number~s!: 05.10.Gg, 02.50.Ey
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I. INTRODUCTION

A Langevin equation of the form

sq̇52“V~q!1z, ~1a!

^z i~ t !z j~ t8!&52sTd i j d~ t2t8!, ~1b!

can appear as the effective description of highly overdam
motion of some coordinatesq in a potentialV in contact with
a thermal bath. The damping, and the random force te
arise from interactions with the thermal bath. By ove
damped, I mean that at a slightly more fundamental level,
equation of motion might be, for example,

q̈1sq̇52“V~q!1z, ~2!

with z as before. Here,s is a damping coefficient, andz is a
Gaussian thermal noise term. In the limit thats is large
compared to the inverse time scales of interest, one can
nore theq̈ term and so obtain Eq.~1a!.

In this paper, I want to consider the case where~a! the
damping coefficients depends onq itself,

s i j ~q!q̇i52¹ iV~q!1z i , ~3a!

^z i~ t !z j~ t8!&52s i j ~q!Td~ t2t8!, ~3b!

and~b! it is already known through other means thatV(q) is
an effective potential that gives the equilibrium distributi
of q as

Peq~q!5 exp@2V~q!/T# ~4!

in whatever approximation may be relevant to the problem
interest. Equation~3! is a special case of what are known
Langevin equations with multiplicative noise. In gener
such equations are notorious for being ambiguous—they
sensitive to exactly how one discretizes time. The purpos
this paper is to show that, with a few very general assum
tions, property~4! is sufficient to uniquely resolve this am
PRE 611063-651X/2000/61~6!/6091~8!/$15.00
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biguity. Moreover, this resolution doesnot correspond to any
standard interpretation~Itô or Stratonovich! of the Langevin
equation~3!.

Though my arguments will be somewhat general, it he
to have in mind a concrete example of an unambiguous
scription for which Eq.~3! will be a limiting case. A simple
example is the analog of Eq.~2! with q-dependent damping

q̈i1s i j ~q!q̇ j52¹ iV~q!1z i , ~5!

with the noise again Eq.~3b!. As I discuss in Appendix A,
this equation is unambiguous and has equilibrium distri
tion ~4!.

I also mention the application of interest to me persona
which motivated this work@1#: electroweak baryon numbe
violation in the early universe. Its study requires understa
ing the effective dynamics of fluctuations in weakly coupl
high-temperature non-Abelian gauge theories, where the
an effective theory of the form~3! at the relevant distance
and time scales, but where it is much more straightforward
analyze static issues, such as Eq.~4!, than the subtleties o
dynamical ones.

II. A FIRST PASS

Let’s rewrite Eq.~3! in the equivalent form

q̇52F~q!1e~q!ji , ~6a!

^j i~ t !j j~ t8!&52Td i j d~ t2t8!, ~6b!

where theq dependence has been scaled out of the noise
definingj[e(q)z, and the matrixe and vectorF are

e~q![@s~q!#21/2, ~7!

F~q![s21~q!“V~q!. ~8!
6091 ©2000 The American Physical Society
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Two standard conventions for discretizing time, and so
moving the ambiguities inherent in equations like Eq.~3!, are
the Itô convention,1

qt2qt2Dt52DtFItô~qt2Dt!1e~qt2Dt!j̃t , ~9!

and the Stratonovich convention,

qt2qt2Dt52DtFStrat~ q̄!1e~ q̄!j̃t , ~10!

q̄[
qt1qt2Dt

2
, ~11!

where in both cases the discretized noise correlation is

^j̃ i t j̃ j t 8&52TDtd i j d tt8 . ~12!

The specification ofFStrat(q̄) as opposed toFStrat(qt2Dt) in
Eq. ~10! is actually irrelevant: it is only theq used to evalu-
ate e that causes the difference between these two con
tions in theDt→0 limit.

If one simply tries settingFItô5F or FStrat5F, the Itô
and Stratonovich equations will give rise to different physi
and in particular different equilibrium distributions. Th
two conventions are identical in theDt→0 limit only if one
sets

Fi
Itô5Fi

Strat2Teia, jeja . ~13!

~Here and throughout, I adopt the notation that indices aft
comma represent derivatives:Fi , j[]Fi /]qj and Fi , jk
[]2Fi /]qj]qk .)

The value ofF that should be used for a particular phys
cal problem therefore depends on what discretization c
vention one picks to use. Since the value ofF is ambiguous,
one approach might be to simply pick a discretization c
vention ~it does not matter which one!, and then chooseF
however necessary to reproduce the desired equilibrium
tribution ~4!. To be concrete, let us choose Stratonovich c
vention. The Stratonovich Langevin equation~10! is well
known to be equivalent to the following Fokker-Plan
equation for the time evolution of the probability distributio
P(q,t):

Ṗ5¹ i@Teia¹ j~ejaP!1Fi
StratP#. ~14!

My requirement is that this equation have the equilibriu
distribution~4! as a time-independent solution. A simple w
to achieve this is for

Teia¹ j~ejaPeq!1Fi
StratPeq50, ~15!

which gives

Fi
Strat5~s21! i j ¹ jV2Teiaeja, j . ~16!

1For a general review of background material for this paper
notation close to what I use here, see, for example, Chap. 4 of
@2#. The most substantial differences in notation are that myF and
T are that reference’s12 f and 1

2 V.
-
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Compare to our naive starting point~8!. Equivalently,

Fi
Itô5~s21! i j ¹ jV2T~s21! i j , j . ~17!

So one might suspect that the Stratonovich equa
~10! together with Eq.~16!, or equivalently the Itoˆ equation
~9! together with Eq.~17!, gives the correct description
of the system. As we shall see, this is indeed
case.

Based on the presentation so far, the reader might be
picious of two things. First, once we modify the equatio
changing what we thought wasF(q) to suit our needs, how
do we know we are not supposed to change other thing
well? In particular, what tells us that we shouldn’t chan
e(q) in some way, then make some compensating chang
F to force the equilibrium distribution to work out? The b
sic answer is thatF is sensitive to the details of short-tim
physics and regularization, wherease is not, as evidenced by
the fact thatF must be changed when one adopts differe
conventions like Itoˆ or Stratonovich, bute need not. This
comes down to a discussion of the renormalizability of t
theory, and its consequences for how, in principle, the the
should be matched to a more fundamental description of
physics. Such issues are more familiar in the context
theories defined by path integrals, and so much of the res
this paper will be to translate the discussion into that la
guage.

Second, the StratonovichF of Eq. ~16! is not the
unique solution to Eq.~14! for P5Peq. The general solution
is

Fi
Strat5~s21! i j ¹ jV2Teiaeja, j1hie

1V/T, ~18!

whereh5h(q) is any function with“•h50.
I shall throughout focus on systems where the underly

physics, whatever it may be, is reversible. More specifica
I shall assume that the effective theory~1! must be defined in
such a way that equilibrium time-dependent correlatio
such as^q(t)q(0)&, are invariant under time reversal.@As
discussed in Appendix A, the behavior of the Langevin eq
tion with inertia~5! has this property, even though the equ
tion by itself is not time-reversal invariant.# As I will show,
this assumption will rule out the extra term involvingh in
Eq. ~18!. I shall then discuss in more detail, in the langua
of path integrals, how the issue of whethere or F should be
modified from their ‘‘naive’’ values is an issue of renorma
izability. Specifically, I will define ‘‘naive’’ by assuming
that there is some more fundamental description of the ef
tive theory, such as the Langevin equation~5! with inertia,
that is unambiguous and is described in terms of the sa
degrees of freedomq. The ‘‘naive’’ values ofe and F will
simply be those defined by naively taking the low frequen
limit of the more fundamental equation. I will show tha
terms associated withe require no ultraviolet renormaliza
tion, while terms associated withF do. Based on genera
procedures for matching effective theories to more fun
mental underlying theories, one may then argue thatF, and
not e, should be modified to make the physics work out rig
This is something that, I believe, may be well known to t

n
ef.



re
r

ib

n-
b

te

ic

de
im
pe

it

nt

to

ions
s
s

m
s is
the

nt.
q.

and
we

t
e-

tion
ui-

e
t

rib
pr

lib

w

PRE 61 6093LANGEVIN EQUATIONS WITH MULTIPLICATIV E . . .
few people to whom it is well known; however, since the
seems to be general confusion on this matter, it seems wo
while to continue.

I should point out that the result~16! can be extracted
from much older, general discussions of systems descr
by Langevin equations if one already knows the correcte(q)
to use~e.g., the naive one! and if one assumes that the u
derlying system is reversible. For example, this result can
derived by specializing the discussion of the review Ref.@3#
if all the Langevin equations in that reference are interpre
using Stratonovich convention.

III. PATH INTEGRAL VERSION

The path integral corresponding to the Stratonov
Langevin equation~10! is, somewhat imprecisely@4#,2 ,3

P~q9,q8,t92t8!5E
q(t8)5q8

q(t9)5q9
@dq~ t !#expF2E

t8

t9
dt L~ q̇,q!G ,

~19!

L~ q̇,q!5
1

4T
~ q̇1F ! is i j ~ q̇1F ! j2

1

2
Fi ,i

1
1

2
eia

21eka,k~ q̇1F ! i1
T

4
eia, jeja,i

1d~0! tr ln e. ~20!

Here and henceforth, I abbreviateFStrat as simply F. The
imprecision is just due to the fact that this path integral
pends on the details of how time is discretized. I have
plicitly assumed a time-symmetric discretization above. S
cifically, Eq. ~19! really means

P~q9,q8,t92t8!5 lim
Dt→0

NE
q(t8)5q8

q(t9)5q9F)
t

dqtG
3expF2Dt(

t
LS qt2qt2Dt

Dt
,
qt1qt2Dt

2 DG,
~21!

whereN is an overall normalization I shall not be explic
about, and whered(0) in Eq. ~20! means (Dt)21. If I had
used some other discretization convention in the path i
gral, the LagrangianL would be different from Eq.~20!.

2There is a small change of notation from Ref.@4#: the (dete)21

preexponential factor of that reference has been moved up into
exponent and absorbed intoL.

3The formalism here is somewhat similar to that used to desc
stochastic processes on curved manifolds, if one were to inter
s i j as a metric tensorgi j . I should emphasize that this isnot the
problem I am studying. On a curved manifold, the desired equi
rium distribution would be @dets#1/2 exp(2V/T) instead of
exp(2V/T). Mathematically, one can convert between these t
problems by settingVmanifold5V1

1
2 T ln dets.
th-

ed
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d
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For my argument, it will be sufficient~and convenient! to
focus on fluctuations about equilibrium. It is then enough
consider thet8→2` andt9→1` limit of the path integral,
writing

Z[E @dq~ t !#expF2E
2`

1`

dt L~ q̇,q!G . ~22!

Because the system is dissipative, the boundary condit
on q at t56` decouple. Equilibrium correlation function
like ^q(t)q(0)& can then be evaluated in the usual way a

^•••&5Z21E @dq~ t !#expF2E
2`

1`

dt L~ q̇,q!G•••. ~23!

This form allows us to rewrite the Lagrangian in a for
where the assumed time-reversal symmetry of correlation
manifest. Simply as an illustrative example, suppose for
moment thatF did have the form~16! that I am trying to
demonstrate. The Lagrangian~20! is not manifestly invariant
under t→2t. However, for the choice~16! of F, this La-
grangian can be rewritten as

L~ q̇,q!5
1

4T
q̇is i j q̇ j1

1

4T
~¹ iV!~s21! i j ~¹ jV!

2
1

2
¹ i@~s21! i j ¹ jV#1

T

4
~s21! i j ,i j 1d~0! tr ln e

1
1

2T
] tV. ~24!

Only the last term is not manifestly time-reversal invaria
However, with the path integral in the current form of E
~22!, we are allowed to throw away terms inL that are total
time derivatives. That is because they can be integrated
reexpressed in terms of the boundary conditions, which
know are irrelevant.@As reviewed in Appendix B, the fac
that one may naively integrate total time derivatives is d
pendent upon the use of the symmetric time discretiza
~21!.# The result is, that for the purpose of computing eq
librium ~but time-dependent! correlators, we can replaceL
by

L2~ q̇,q!5
1

4T
q̇is i j q̇ j1

1

4T
~¹ iV!~s21! i j ~¹ jV!

2
1

2
¹ i@~s21! i j ¹ jV#1

T

4
~s21! i j ,i j 1d~0! tr ln e.

~25!

It is important to emphasize thatL2 cannot be used in the
finite-time path integral~19!: it would not produce the sam
P(q9,q8,t92t8).

In passing, we can now see the problem ifF contained the
additionalh term of Eq.~18!. The LagrangianL given by Eq.
~20! would then produce additional terms in Eq.~24!, one of
which,

1

2T
q̇is i j hje

V/T, ~26!
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is odd under time reversal. So the appearance ofh would
contradict my assumption about reversibility, unless Eq.~26!
can be waived away as a total time derivative. This wo
require

dFi[hie
V/T5~s21! i j ¹ jf ~27!

for some functionf(q). But, returning to Eq.~16!, this just
corresponds to a shift ofV→V1f, and the equilibrium dis-
tribution produced by the Fokker-Planck equation~14!
would then be exp@2(V1f)/T# instead of the required
exp(2V/T).

Now let us divorce ourselves from the particular for
~16! that I’ve claimed forF. Instead, just write down the
most general form for a manifestly time-reversal invaria
L2:

L2~ q̇,q!5
1

4T
q̇is i j ~q!q̇ j1U~q!. ~28!

Before discussing how to determine the correct choices
s i j and U for this equation, I want to discuss it
renormalization.4 Imagine that the Lagrangian could be e
panded in perturbation theory about someq0 with s(q0)
finite and nonzero. For simplicity, sayq050. The arguments
that follow will be about the entire perturbative expansion,
all orders in perturbation theory. To this end, write

1

4T
q̇is i j ~q!q̇ j5

1

4T
@ q̇is i j ~0!q̇ j1q̇ids i j ~q!q̇ j #, ~29!

and formally considerds as a perturbation.
I will now show that theU(q) term in Eq.~28! requires

counterterms, but thes(q) term does not. The Lagrangia
~25! is super-renormalizable: counterterms are needed
for one loop and two loop diagrams. This can be seen
simple power counting of diagrams. The most ultravio
~UV! divergent diagrams will be those whose vertices

4If the discussion in this paper is applied to a field theory, the
am assuming that the theory has already been regulated spatial
the introduction of a small distance cutoff~either explicitly, by a
spatial lattice cutoff, or implicitly by, for example, dimension
regularization!, and that I am now separately considering the iss
of regularizing and renormalizing small-time divergences. The d
cussion of divergences and power counting will therefore be so
what different from what is usual in field theory, where one ty
cally regulates space and time simultaneously.

FIG. 1. The UV divergent one-loop graphs.
d

t

of

ly
y
t
-

volve as many powers as possible of internal frequency. T
is, vertices generated by theq̇ids i j (q)q̇ j terms in Eq.~25!
will give more UV divergent behavior than vertices gene
ated by theU(q) terms. And the most divergent behavio
will occur when theq̇’s are associated with internal rathe
than external lines. The most divergent one-loop diagra
are therefore those depicted by Fig. 1. The UV behavior
such graphs is

E dv
~v2!V

~v2! I 5E dv, ~30!

where (v2)V are the powers ofv from theV verticesq̇dsq̇,
and (v2)2I are thev→` behavior of theI 5V internal
propagators. So this class of diagrams is linearly divergen
the UV. The linearly divergent piece is independent of e
ternal frequencies, and so requires a counterterm inU(q) but
not one in the kinetic termq̇sq̇. That is, so far we have see
that the effectiveU(q) is dependent on the details of shor
time physics, but we have not seen any evidence thats(q)
is.

Are there divergences associated with external freque
dependence? Expanding the diagrams of Fig. 1 in power
external momenta, each such power will come at the expe
of one of the factors ofv in Eq. ~30!. So no counterterms
involving two external frequencies are necessary—that is
counterterm forq̇sq̇ is necessary. There could be a log d
vergence associated with one external frequency factor,
cept that the resultingv integral *dv/v vanishes by the
assumption that the equilibrium physics is time-reversal
variant ~and the fact that I am using a symmetric discretiz
tion of the path integral, which respects that invariance!.

Similarly, one could imagine a different method of hoo
ing up the diagrams of Fig. 1 in which one or more of theq̇
factors were associated with external rather than inte
lines. If this happens for two or more factors, the loop in
gral is no longer UV divergent and so is not sensitive
short-time physics. If it happens for only one factor, then
loop integral again vanishes by the assumption of tim
reversal invariance. Therefore, the linear UV divergence~30!
previously discussed is theonly UV divergence at one loop

Now consider two loop diagrams, again maximizing t
divergence by usingq̇dsq̇ vertices rather thanU(q) ones,
and associating allq̇’s with internal lines. The result is
shown in Fig. 2. Simple power counting gives the maximu

I
by

e
-
e-

FIG. 2. The UV divergent two-loop graphs. In the vertices w

three internal lines, theq̇’s can be associated with any two of them
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possible new divergence at two loops as order

E d2v
~v2!V

~v2! I 5E d2v

v2 , ~31!

whereI 5V11 andv just counts powers of combinations o
the two loop frequenciesv1 and v2. A logarithmic diver-
gence is possible, but this divergence has no dependenc
external frequencies. As before, if we focus on the dep
dence of these diagrams on external frequency, then the
no sensitivity to short-time physics. If we go to yet high
orders in diagrams, there are no new divergences at all: n
power counting gives*v22(L21)dLv for anL-loop diagram.

The outcome of all this is that onlyU(q) is sensitive to
the details of short-time physics;q̇sq̇ is not.

In the language of path integrals, the ‘‘naive’’ low
frequency limit of a theory is what you get if you simp
replace the Lagrangian by its low-frequency limit. This r
placement is naive when there are UV divergences in
resulting effective theory, which make the physics of th
theory sensitive to how it is cut off in the UV—that is, se
sitive to the details of the more fundamental theory. For
nately, these details can be absorbed into a redefinition o
effective interactions which depend on them. In this ca
that meansU(q) is modified from its naive form, butq̇sq̇ is
not.

Since this point is important, let me state it another w
The basic theory and technology of matching parameter
low-frequency effective theories to those of more fundam
tal theories, to any and all orders in perturbation theory,
been used in a number of problems in field theory, includ
Bose condensation@5#, ultrarelativistic plasmas@6#, heavy
quark physics@7#, and nonrelativistic plasma physics@8#.
~For a general discussion, see also Ref.@9#.! The basic idea is
to fix a regularization for the effective theory, to then treat
the parameters of the effective theory as adjustable, to ca
late low-frequency observables in both the effective the
and the more fundamental theory, and then to fix the par
eters of the effective theory to obtain agreement. If we s
ply fixed s(q) andU(q) to be their naive values, everythin
would match order by order in perturbation theory if it we
not for the UV divergences in the effective theory: if di
grams only involved low frequencies in propagators and v
tices, then each internal line and vertex in the underly
theory would match up with each one in the naive effect
theory. The only thing we have to correct for are UV dive
gent graphs or subgraphs, where the correspondence w
fail. But the previous discussion shows that such divergen
have the form of counterterms forU(q), and so the matching
of the two theories can be fixed by appropriate adjustmen
those counterterms.

If we had a specific underlying theory in mind, we cou
carry out this matching procedure by computing to two loo
in perturbation theory. The crucial point here is that suc
calculation is unnecessary, and detailed knowledge of
underlying theory is unnecessary, if we know that the eq
librium distribution is Eq.~4!. We can then immediately
solve the problem by simply requiring that we chooseU(q)
so that the equilibrium distribution comes out right.

Returning to the Lagrangian~20! corresponding to the
original Langevin equation, the only way we can chan
on
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U(q) without changingq̇sq̇ is by changingF, which justi-
fies the argument for choosingFStrat given in Sec. II. Alter-
natively, one can uniquely determineU(q) directly by re-
quiring that the Euclidean Schro¨dinger equation,
corresponding to the path integral with the generic Lagra
ian L2 @Eq. ~28!#, generate exp(2V/T) as its equilibrium dis-
tribution. This is carried out in Appendix C, which also e
plains some interesting distinctions between t
interpretation of the Euclidean Schro¨dinger equation associ
ated withL2 @Eqs. ~25! or ~28!# and that associated withL
@Eq. ~20!#. The final result agrees with the initial analysis
Sec. II.
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APPENDIX A: THE LANGEVIN EQUATION
WITH INERTIA

The Langevin equation~5! with inertia can be written in
the form of a standard first-order Langevin equation by
writing it as a system of first order equations, introducingv
[q̇:5

v̇1s~q!v52“V~q!1e21~q!j, ~A1a!

q̇5v. ~A1b!

This equation is free of the usual discretization ambiguiti
To see this, consider the difference between Stratonov
and Itôdiscretization conventions, which differ in how theq
in the e21(q)j term is evaluated. That difference inq is
1
2 q̇Dt, which means a difference in thee21(q)j term of

Dt

2
~e21! i j ,kq̇kj j . ~A2!

In a Langevin equation such as our effective theory~6!, this
would not vanish in theDt→0 limit becausej is order
(Dt)21/2, and then so isq̇ by the equation of motion~6!.6 In
the case at hand, matters are different, becauseq̇k5vk , and,
though Eq.~A1a! implies that the time derivativev̇ will be
order (Dt)21/2, v itself is perfectly finite asDt→0. So, in the
case at hand, the difference~A2! vanishes in theDt→0
limit.

5Interestingly, this is a very special case of a general set of Lan
vin equations considered in Ref.@10#.

6See, for example, Secs. 4.7–8 of Ref.@2# for a review.
7See, for example, Sec. 4.6 of Ref.@2# for a review, as well

as Ref.@3#.
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6096 PRE 61PETER ARNOLD
It is also interesting to sketch how this works in the pa
integral formulation. Converting Eq.~5! directly into a path
integral using standard methods7 gives a path integral with
Lagrangian

L5
1

4T
~ q̈1sq̇1“V!s21~ q̈1sq̇1“V!1Lh1d~0! tr ln e,

~A3!

Lh5h̄ i$d i j ] t
21s i j ] t1~e21!ai@eka, j q̈k1~e21!ak, j q̇k

1¹ j~eka¹kV!#%h j , ~A4!

whereh̄ andh are anticommuting Grassman fields~ghosts!.
A diagrammatic analysis similar to that discussed in the m
text produces no UV divergences because theq̈s21q̈ term
means thatq propagators go likev24 in the UV instead of
only v22. So diagrams converge faster in the UV than th
did in the previous analysis.

Now let us check the equilibrium distribution forq. Since
Eq. ~A1! formally has the same form as a generic first-ord
Langevin equation~6! @the number of degrees of freedo
have simply doubled fromq to (q,v)], we can use result~14!
for the Fokker-Planck equation for the probability distrib
tion P(q,v,t), which translates in the present case to

Ṗ5¹v i
$T~e21! ia¹v j

@~e21! jaP#1~sv1“qV! i P%

1¹qi
$2v i P%

5s i j @T¹v i
¹v j

P1¹v i
•~v j P!#1“qV•“vP2v•“qP.

~A5!

The equilibrium solution is

Peq~ q̇,q!5expH 2
1

T
@ 1

2 v21V~q!#J . ~A6!

If we are only interested in the distribution inq and notv
5q̇, we may integrate over all possible values ofq̇ and ob-
tain Eq.~4!.

Finally, I turn to my claim that this system has tim
reversal invariant equilibrium correlations^q(t)q(0)&. One
way to see this is from the path integral LagrangianL of Eq.
~A3!, which can be rewritten as

L5
1

4T
~ q̈1“V!s21~ q̈1“V!1

1

4T
q̇sq̇1Lh1d~0! tr ln e

1
1

2T
] t~

1
2 q̇21V!. ~A7!

As discussed in the main text, the total time derivative at
end can be thrown away if one is only interested in equi
rium correlations. The rest ofL is manifestly time-reversa
invariant, except possibly the ghost termLh . ~It is again
important here that my path integrals are all implicitly d
fined with symmetric time discretization.!

For this system, the ghost term is actually fairly trivial,
can be seen by integrating out the ghosts. Consider the
turbative expansion of the theory, and imagine an arbitr
in

y

r

e
-

er-
y

ghost loop. In frequencyv, the perturbative ghost propagato
is of the form@2v22 is(0)v1M2#21 ~where I have sup-
pressed the indicesi , j ). The poles inv all lie in the lower
half complex plane. Almost any frequency integral corr
sponding to a ghost loop can then be seen to vanish by c
ing the integration contour in the upper half plane. The o
exception is for loops with frequency integrals where t
integrand does not fall off faster than 1/v asuvu→`, since in
this case we cannot ignore the contribution of the contou
infinity. This situation arises only for ghost loops with
single ghost propagator and a single vertex of the fo
2 ivds(q). The resulting frequency integral yields an effe
tive interaction among theq’s of

Lh→2E
2`

1` dv

2p

2 ivds

@2v22 ivs~0!1M2#
52 1

2 ds.

~A8!

Resorting indicesi , j and not worrying about keeping trac
of additive constants in the action, this becomes

Lh→2 1
2 trs. ~A9!

This is clearly time-reversal invariant.

APPENDIX B: INTEGRATING BY PARTS
WITH SYMMETRIC DISCRETIZATION

Consider a term in the action of the form

I 5E dt q̇•“ f ~q!, ~B1!

which can be naively integrated to yield a boundary term
will review how this naive integration is justified for th
symmetric time discretization used in this paper. In that d
cretization,I really represents

I 5(
t

~qt112qt!•“ f S qt111qt

2 D , ~B2!

where t5t/Dt is an integer parametrizing the time step
Now consider the Taylor expansion off (qt11)2 f (qt) about
q̄[(qt111qt)/2:

f ~qt11!2 f ~qt!5Dq•“ f ~ q̄!1O„~Dq!3
…, ~B3!

whereDq[qt112qt . So we can rewrite

I 5(
t

@ f ~qt11!2 f ~qt!1O„~Dq!3
…#. ~B4!

In a path integral, contributions to the action survive in t
Dt→0 limit if they contributeO(Dt) or more per time step.8

The kinetic term determines the size ofDq to beO„(Dt)1/2
….

Therefore, theO„(Dq)3
… term in Eq.~B4! can safely be ig-

nored, and what is left trivially cancels between success
time steps, except for boundary terms.

8Think about the contributions of a potential term:*dt U(q)
5Dt( tU(q). Such contributions are manifestlyO(Dt) per time
step.
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The fact that the error wasO„(Dq)3
… and notO„(Dq)2

…

~which would not be ignorable! in Eq. ~B4! depended cru-
cially on the symmetric discretizationq̄5(qt111qt)/2.

APPENDIX C: EUCLIDEAN SCHRÖ DINGER EQUATION
FOR L 2

We can directly determine the equilibrium distributio
generated by the generic Lagrangian~28! by transforming
the path integral into a Euclidean Schro¨dinger equation.
First, recast the path integral overq(t) as a path integral ove
q(t) and momentump(t):

Z25 lim
Dt→0

N8E F)
t

dptdqtGe2S2(p,q), ~C1!

S2~p,q!5(
t

H 2 ipt•~qt2qt21!1DtH2S pt ,
qt1qt21

2 D J ,

~C2!

H2~p,q!5Tps21~q!p1u~q!, ~C3!

u[U2
1

Dt
tr ln e, ~C4!

which can be checked simply by doing the Gaussian inte
tion overp. In this form, the path integral is well known t
correspond to a Schro¨dinger equation

@H2~p,q!#Wc~q,t !52ċ~q,t !, ~C5!

where the subscript W indicates Weyl ordering of the ope
torsp andq. The Weyl ordering formula we need in the ca
at hand is that9

@pipjA~q!#W5
1

4
ˆp̂i ,$ p̂ j ,A~ q̂!%‰, ~C6!

where I have now introduced hats to emphasize thatp andq
are operators. Takingp̂52 i“, the Schro¨dinger equation
~C5! then becomes

ċ5H TF ~s21! i j ¹ i¹ j1~s21! i j ,i¹ j1
1

4
~s21! i j ,i j G2uJ c.

~C7!

I have used the symbolc instead ofP in this equation
because the equilibrium result forc must be the square roo
of the probability distribution. That is, we want the Schr¨-
dinger equation~C7! to have

ceq5e2V(q)/2T ~C8!

as its solution rather than exp(2V/T). To understand this
consider the original LagrangianL from the discussion of the
path integral form of Langevin equations.L differed fromL2
only by a total time derivative. The Schro¨dinger equation

9See, for example, Ref.@3# for a review of this fact in the presen
context.
a-

-

corresponding toL is simply the Fokker-Planck equatio
~14!, which I will now write in the form

Ṗ52Ĥ1P. ~C9!

Both formulations, in terms ofL or L2, should generate the
same equilibrium physics—that is, the same time-depend
correlation functions. A crucial difference betweenĤ2 and
Ĥ1, however, is that the operatorĤ2 is Hermitian, whileĤ1
is not. Now think about what it means to write down a pa
integral expression for the equilibrium probability distrib
tion Peq(q̃)5^d(q2q̃)& in terms of actions that run betwee
arbitrarily large times2T and1T. The corresponding objec
in the Schro¨dinger formulation is

Peq~ q̃!5 lim
T→`

^q~1T!ue2ĤTuq̃&^q̃ue2ĤTuq~2T!&

^q~1T!ue22ĤTuq~2T!&
,

~C10!

whereĤ can be eitherĤ1 or Ĥ2. What dominates the long
time evolution operator exp(2ĤT) is the equilibrium state,
which I will denoteueq&. The difference betweenH1 andH2

is that the long-time evolution generated byĤ2 must be sym-
metric in its overlap with the initial and final states, becau
Ĥ2 is Hermitian. That is, in the largeT limit,

^q8ue2Ĥ2Tuq9&→^q8ueq2&^eq2uq9&. ~C11!

Ĥ1 is not Hermitian and so does not have this symmetry.
fact, we know from the usual Fokker-Planck equation cor
sponding toH1 that the evolution is dissipative, and the r
sult of long-time evolution is independent of initial cond
tions. So

^q8ue2Ĥ1Tuq9&→^q8ueq1&. ~C12!

In the case ofH2, Eq. ~C10! then becomes

Peq~ q̃!5u^q̃ueq2&u2, ~C13!

whereas forH1 it becomes

Peq~ q̃!5^q̃ueq1&. ~C14!

One can now see that the equilibrium wave function rep
sents the square root ofPeq in the case ofH2 but Peq itself in
the case ofH1.

In any case, we can now uniquely determineu(q), and
henceU(q), simply by requiring that the equilibrium ampli
tude ~C8! be a solution of the Schro¨dinger equation~C7!.
One finds

u5
1

4T
~“V!s21~“V!2

1

2
“~s21

“V!1
T

4
~s21! i j ,i j ,

~C15!

which precisely reproduces the result~25! for the L2 that
describes the Langevin equation, with my claimed result~16!
for FStrat.
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