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A Langevin equation with multiplicative noise is an equation schematically of the tigfdt=—F(q)
+e(q) ¢, wheree(q) § is Gaussian white noise whose amplituglg]) depends om itself. Such equations are
ambiguous, and depend on the details of one’s convention for discretizing time when solving them. | show that
these ambiguities are uniquely resolved if the system has a known equilibrium distributjon\&gp/T] and
if, at some more fundamental level, the physics of the system is reversible. | also discuss a simple example
where this happens, which is the small frequency limit of Newton's equatjere®(q)q=— VV(q)
+e1(q) £ with noise and aj-dependent damping term. The resolution doescorrespond to simply inter-
preting naive continuum equations in a standard convention, such as Stratonovich or Ito

PACS numbgs): 05.10.Gg, 02.50.Ey

[. INTRODUCTION biguity. Moreover, this resolution doe®t correspond to any
standard interpretatiofito or Stratonovich of the Langevin
A Langevin equation of the form equation(3).
Though my arguments will be somewhat general, it helps
oq=—-VV(q)+¢ (1a  to have in mind a concrete example of an unambiguous de-
scription for which Eq{(3) will be a limiting case. A simple
(G0 g(t"))y=20Tg;6(t—t"), (1b)  example is the analog of EQR) with g-dependent damping:

can appear as the effective description of highly overdamped - .

motion of some coordinatessin a potentiaV in contact with Gi+oij(@)a;=—ViV(a) + ¢, ®

a thermal bath. The damping, and the random force term,

arise from interactions with the thermal bath. By over-with the noise again Eq3b). As | discuss in Appendix A,
damped, | mean that at a slightly more fundamental level, théhis equation is unambiguous and has equilibrium distribu-

equation of motion might be, for example, tion (4).
o | also mention the application of interest to me personally,
g+oq=—-VV(q)+¢, (2 which motivated this worK1]: electroweak baryon number

violation in the early universe. Its study requires understand-
with £ as before. Herey is a damping coefficient, anglis a  ing the effective dynamics of fluctuations in weakly coupled
Gaussian thermal noise term. In the limit thatis large  high-temperature non-Abelian gauge theories, where there is
compared to the inverse time scales of interest, one can ign effective theory of the forng3) at the relevant distance

nore theq term and so obtain Eq1a). and time scales, but where it is much more straightforward to
In this paper, | want to consider the case whéethe analyze static issues, such as E4), than the subtleties of

damping coefficientr depends or itself, dynamical ones.

aij(@di=—-V;V(a) + ¢, (39 I. A FIRST PASS

(GO E(t)) =20 () Ts(t—t"), (3b) Let's rewrite Eq.(3) in the equivalent form

and(b) it is already known through other means thgg) is .
an effective potential that gives the equilibrium distribution q=—F(q)+e(q)§, (63
of q as

Peq(q): exf — V(q)/T] (4) <§i(t)§j(t )>=2T5ij o(t—t"), (6b)

in whatever approximation may be relevant to the problem ofvhere theq dependence has been scaled out of the noise by
interest. Equatiori3) is a special case of what are known asdefining é&=e(q) ¢, and the matrixe and vector- are

Langevin equations with multiplicative noise. In general,

such equations are notorious for being ambiguous—they are e(q)=[o(q)] 2 @)
sensitive to exactly how one discretizes time. The purpose of '

this paper is to show that, with a few very general assump-

tions, property(4) is sufficient to uniquely resolve this am- F(g) =0 Y(q)VV(q). (8

1063-651X/2000/6(6)/6091(8)/$15.00 PRE 61 6091 ©2000 The American Physical Society



6092

PETER ARNOLD

PRE 61

Two standard conventions for discretizing time, and so reCompare to our naive starting poi(8). Equivalently,

moving the ambiguities inherent in equations like E3), are
the 1to convention:

Qi— O ar= — AtF™(q,_ ) +e(a 1) &, 9

and the Stratonovich convention,

Ot —Qt—at=— AtFS"an_) + e(q_)ft ) (10
— +q;_
= 0t gt At ’ (11)

where in both cases the discretized noise correlation is
<~§it~‘§jt'>:2TAt5ij Oy - (12

The specification oFS"{(q) as opposed t&5"(q,_,,) in
Eq. (10) is actually irrelevant: it is only the used to evalu-

Flo= (o™ ViV=T(o )y, 7

So one might suspect that the Stratonovich equation
(10) together with Eq(16), or equivalently the [teequation

(9) together with Eq.(17), gives the correct description
of the system. As we shall see, this is indeed the
case.

Based on the presentation so far, the reader might be sus-
picious of two things. First, once we modify the equation,
changing what we thought wasq) to suit our needs, how
do we know we are not supposed to change other things as
well? In particular, what tells us that we shouldn’t change
e(qg) in some way, then make some compensating change in
F to force the equilibrium distribution to work out? The ba-
sic answer is thaF is sensitive to the details of short-time
physics and regularization, whereass not, as evidenced by

ate e that causes the difference between these two convenhe fact thatF must be changed when one adopts different

tions in theAt—0 limit. i
If one simply tries setting="°=F or FS"=F, the Ifo

conventions like ltoor Stratonovich, bue need not. This
comes down to a discussion of the renormalizability of the

and Stratonovich equations will give rise to different physics,theory, and its consequences for how, in principle, the theory
and in particular different equilibrium distributions. The should be matched to a more fundamental description of the

two conventions are identical in thet—0 limit only if one
sets

Flo=F-Te, €. (13

physics. Such issues are more familiar in the context of
theories defined by path integrals, and so much of the rest of
this paper will be to translate the discussion into that lan-
guage.

Second, the StratonoviclF of Eq. (16) is not the

(Here and throughout, | adopt the notation that indices after anique solution to Eq14) for P=P,. The general solution

comma represent derivativest; j=dF;/dq; and F; .

The value ofF that should be used for a particular physi-
cal problem therefore depends on what discretization con-

vention one picks to use. Since the valug=of ambiguous,

is

FiStrat:(Jfl)ijvjV_Telaejayj+hie+V/T, (18

one approach might be to simply pick a discretization conwhereh=h(q) is any function withV-h=0.

vention (it does not matter which oneand then choosé&

| shall throughout focus on systems where the underlying

however necessary to reproduce the desired equilibrium digshysics, whatever it may be, is reversible. More specifically,
tribution (4). To be concrete, let us choose Stratonovich conq shall assume that the effective thegfly must be defined in

vention. The Stratonovich Langevin equati¢tO) is well

such a way that equilibrium time-dependent correlations,

known to be equivalent to the following Fokker-Planck such as(q(t)q(0)), are invariant under time reversiAs
equation for the time evolution of the probability distribution discussed in Appendix A, the behavior of the Langevin equa-

P(q,t):

P=Vi[Te,V;(e.P)+F"P]. (14)

tion with inertia(5) has this property, even though the equa-
tion by itself is not time-reversal invariahtAs | will show,
this assumption will rule out the extra term involvimgin
Eqg. (18). | shall then discuss in more detall, in the language

My requirement is that this equation have the equilibriumof path integrals, how the issue of whetteeor F should be
distribution(4) as a time-independent solution. A simple way modified from their “naive” values is an issue of renormal-

to achieve this is for
TeaV(€aPeg + F " Pe=0, (15)
which gives

FiStrat:(O’il)ijVjV_TQaeja’j. (16)

izability. Specifically, | will define “naive” by assuming
that there is some more fundamental description of the effec-
tive theory, such as the Langevin equati@ with inertia,

that is unambiguous and is described in terms of the same
degrees of freedomg. The “naive” values ofe and F will
simply be those defined by naively taking the low frequency
limit of the more fundamental equation. | will show that
terms associated with require no ultraviolet renormaliza-
tion, while terms associated with do. Based on general

'For a general review of background material for this paper, inprocedures for matching effective theories to more funda-
notation close to what | use here, see, for example, Chap. 4 of Remental underlying theories, one may then argue Haind

[2]. The most substantial differences in notation are thatrnand
T are that reference’sf and 3Q).

note, should be modified to make the physics work out right.
This is something that, | believe, may be well known to the
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few people to whom it is well known; however, since there  For my argument, it will be sufficierand convenientto
seems to be general confusion on this matter, it seems wortliecus on fluctuations about equilibrium. It is then enough to
while to continue. consider thé’ — —o0 andt”— + o limit of the path integral,

| should point out that the resu(fl6) can be extracted writing
from much older, general discussions of systems described
by Langevin equations if one already knows the core¢q) _ e :
to use(e.g., the naive oneand if one assumes that the un- Z=J [dq(t)]ex;{ B J,w dtL(q.q)
derlying system is reversible. For example, this result can be
derived by specializing the discussion of the review R&f. Because the system is dissipative, the boundary conditions
if all the Langevin equations in that reference are interpreteén q at t=+<« decouple. Equilibrium correlation functions

. (22)

using Stratonovich convention. like (g(t)q(0)) can then be evaluated in the usual way as
+oo .
Ill. PATH INTEGRAL VERSION (- ->=Z‘1f [dq(t)]exr{—f dtL(q,9)|---. (23
The path integral corresponding to the Stratonovich
Langevin equatiorf10) is, somewhat imprecisely],?-3 This form allows us to rewrite the Lagrangian in a form
where the assumed time-reversal symmetry of correlations is
(=g " manifest. Simply as an illustrative example, suppose for the
PQ",q' t"—t")= fq q [dq(t)]exr{—f dtL(q,q)|, moment that~ did have the form(16) that | am trying to
qt’)=q’ v demonstrate. The Lagrangié20) is not manifestly invariant

19 undert— —t. However, for the choic€16) of F, this La-
grangian can be rewritten as

) 1 . . 1
HOO= gr @@ RT3 R L(@.0)= g6 + 2= (V) (o Dy (V)

1, T
+ 58 Ckak(dF F)i+ 76ia,i8a,

+6(0) trine. (20)

1 . T
_Evi[((" )ijVjV]+Z(U )ijijT6(0)trine

1
oV, (24)
Here and henceforth, | abbreviafe"™ as simplyF. The

Imprecision is just due to the fact that this path integral qe'OnIy the last term is not manifestly time-reversal invariant.

pends on the details of how time is discretized. | have IMowever. with the path integral in the current form of Eq.
p_Ii_citIy assumed a time-symmetric discretization above. Spe(zz), we z’are allowed to throw away terms linthat are total
cifically, Eqg. (19) really means time derivatives. That is because they can be integrated and
reexpressed in terms of the boundary conditions, which we
Yy e . qt”y=q" know are irrelevant[As reviewed in Appendix B, the fact
P(q",q",t"=t")= lim Nf I1 da, that one may naively integrate total time derivatives is de-
a0 pendent upon the use of the symmetric time discretization

0= Ot at O+ G at (21).] The result is, that for the purpose of computing equi-
xex;{—AtZ L( ﬂ
t

at’)=q’ | t

At 2 librium (but time-dependeptcorrelators, we can replade
by
(21
La(@.0) = o078+ 2 (T V) (0 By (T,V)
whereN is an overall normalization | shall not be explicit ATTUE AT e
about, and wherg(0) in Eq. (20) means At) L. If | had 1 T
used some other discretization convention in the path inte- — —Vi[((r_l)ijvjV]+ —(o'_l)ij ijto(0)trine.
gral, the Lagrangiah would be different from Eq(20). 2 4 '
(25)

It is important to emphasize that, cannot be used in the

There is a small change of notation from Ref]: the (dete) ~* S . -
preexponential factor of that reference has been moved up into thﬂmte'tlrne path integra(19): it would not produce the same

exponent and absorbed inito %(q”'ql ’t”__t’)' . .
3The formalism here is somewhat similar to that used to describe " Passing, we can now see the problerft fontained the
stochastic processes on curved manifolds, if one were to interprétdditionalh term of Eq.(18). The Lagrangiai. given by Eq.
ojj as a metric tensog;; . | should emphasize that this i®t the (20) would then produce additional terms in Eg4), one of
problem | am studying. On a curved manifold, the desired equilib-Wh'Ch:
rium distribution would be [deto]Y?exp(—VIT) instead of
exp(—VIT). Mathematically, one can convert between these two

——qio;heV'T 26
problems by settingnanito=V + 3 T In deto. 2T i E (26)



6094 PETER ARNOLD PRE 61

FIG. 1. The UV divergent one-loop graphs. FIG. 2. The UV divergent two-loop graphs. In the vertices with
three internal lines, thg's can be associated with any two of them.
is odd under time reversal. So the appearancé @fould
contradict my assumption about reversibility, unless@@  yolve as many powers as possible of internal frequency. That

can pe waived away as a total time derivative. This wouldis’ vertices generated by tftﬁ&rij(q)dj terms in Eq.(25)
require will give more UV divergent behavior than vertices gener-

5FiEhieV/T:(0'_l)ijvj¢ (27)  ated by theU(q) terms. And the most divergent behavior

will occur when theq's are associated with internal rather
for some functiong(q). But, returning to Eq(16), this just  than external lines. The most divergent one-loop diagrams
corresponds to a shift f -V + ¢, and the equilibrium dis-  are therefore those depicted by Fig. 1. The UV behavior of
tribution produced by the Fokker-Planck equatighd) such graphs is
would then be eXp-(V+¢)/T] instead of the required

exp(VIT). (0?)V
Now let us divorce ourselves from the particular form f dw(w—z)|=f dw, (30
(16) that I've claimed forF. Instead, just write down the

most general form for a manifestly time-reversal invariant v .
L where (©<)" are the powers ob from theV verticesqdoq,

and (@2 ' are thew—o behavior of thel=V internal
: 1. . propagators. So this class of diagrams is linearly divergent in
L2(9,9) = z=dioij(A)g;+U(a). (28)  the UV. The linearly divergent piece is independent of ex-
ternal frequencies, and so requires a counterterbh(ip) but
Before discussing how to determine the correct choices ofiot one in the kinetic terrﬁaq. That is, so far we have seen
oij and U for this equation, | want to discuss its that the effectiveJ(q) is dependent on the details of short-
renormalizatiorf. Imagine that the Lagrangian could be ex- time physics, but we have not seen any evidence dtfg)
panded in perturbation theory about someg with o(qg) is.

finite and nonzero. For simplicity, say=0. The arguments Are there divergences associated with external frequency
that follow will be about the entire perturbative expansion, todependence? Expanding the diagrams of Fig. 1 in powers of
all orders in perturbation theory. To this end, write external momenta, each such power will come at the expense

of one of the factors ofv in Eq. (30). So no counterterms
involving two external frequencies are necessary—that is, no

counterterm forjoq is necessary. There could be a log di-
vergence associated with one external frequency factor, ex-
cept that the resultingy integral fdw/w vanishes by the

> assumption that the equilibrium physics is time-reversal in-
counterterms, but the'(.Q) term does not. The Lagrangian variant(and the fact that | am using a symmetric discretiza-
(25) is super-renormalizable: counterterms are needed onIMOn of the path integral, which respects that invariance

f(_)r one loop and two loop d_iagrams. This can be seen by Similarly, one could imagine a different method of hook-
simple power counting of diagrams. The most ultraviolet.

(UV) divergent diagrams will be those whose vertices in-"9 up the d|agrams. of Fig. .1 in which ane or more Of the
factors were associated with external rather than internal

lines. If this happens for two or more factors, the loop inte-
. o . ' . gral is no longer UV divergent and so is not sensitive to
“If the discussion in this paper is applied to a field theory, then Ishort-time physics. If it happens for only one factor, then the
am assuming that the theory has already been regulated spatially, lyop integral again vanishes by the assumption of time-
the introduction of a small distance cutdgither explicitly, by a  reversal invariance. Therefore, the linear UV diverge{3
spatial lattice cutoff, or implicitly by, for example, dimensional previously discussed is thenly UV divergence at one loop.

regulariza_tigr)n, and that | am now separa_tely cpnsidering the issye Now consider two loop diagrams, again maximizing the
of regularizing and renormalizing small-time divergences. The dis- . L : .

cussion of divergences and power counting will therefore be somed'vergence_ by US'”%‘H&TQ. Ver.t'ces rather thai (q) Ones'_
what different from what is usual in field theory, where one typi- and associating alty's with internal lines. The result is

cally regulates space and time simultaneously. shown in Fig. 2. Simple power counting gives the maximum

1. ) 1 . ) . .
EQiUij(q)Qj:E[quij(o)Qj+qi60'ij(Q)Qj]v (29

and formally considebo as a perturbation.
I will now show that theU(q) term in Eq.(28) requires



PRE 61 LANGEVIN EQUATIONS WITH MULTIPLICATIVE . .. 6095

possible new divergence at two loops as order U(q) without changingjaq is by changingF, which justi-
() o fies the argument for choosirfg™" given in Sec. Il. Alter-
f Ro—y1= | —, (31) na_tlyely, one can unlquely_ determlmlf(q_) directly by re-
(%) @ quiring that the Euclidean Schiimger equation,
_ o corresponding to the path integral with the generic Lagrang-
wherel =V+1 andw Jugt counts powers of c_()mb]nat!ons of ian L, [Eq. (28)], generate expfVIT) as its equilibrium dis-
the two loop frequencies; and w,. A logarithmic diver-  ip\ion. This is carried out in Appendix C, which also ex-
gence is p055|ble,_ but this dlverge_nce has no dependence Blhins some interesting distinctions  between  the
external frequencies. As before, if we focus on the depenerpretation of the Euclidean Scliager equation associ-
dence of these diagrams on external frequency, then there Bed with L, [Egs. (25) or (28] and that associated with

no sensitivity to short-time physics. If we go to yet higher igq (o0)]. The final result agrees with the initial analysis of
orders in diagrams, there are no new divergences at all: naivgg. .

power counting giveg o 2~ Yd‘w for anL-loop diagram.
The outcome of all this is that onlyd(q) is sensitive to
the details of short-time physicgpq is not.

In the language of path integrals, the “naive” low- | thank Larry Yaffe, Dam Son, Matthias Otto, and Tim
frequency limit of a theory is what you get if you simply Newman for useful conversations. This work was supported
replace the Lagrangian by its low-frequency limit. This re-py the U.S. Department of Energy under Grant No.
placement is naive when there are UV divergences in th©EFG02-97ER41027. | thank the Department of Energy’s
resulting effective theory, which make the physics of thatinstitute for Nuclear Theory at the University of Washington

theory sensitive to how it is cut off in the UV—that is, sen- for its hospitality during the completion of this work.
sitive to the details of the more fundamental theory. Fortu-

nately, these details can be absorbed into a redefinition of the
effective interactions which depend on them. In this case,

that meandJ(q) is modified from its naive form, bujoq is
not. The Langevin equatiofb) with inertia can be written in
Since this point is important, let me state it another waythe form of a standard first-order Langevin equation by re-
The basic theory and technology of matching parameters aofriting it as a system of first order equations, introducing
low-frequency effective theories to those of more fundamenEQ;S
tal theories, to any and all orders in perturbation theory, has
been used in a number of problems in field theory, including
Bose condensatiofs], ultrarelativistic plasma$6], heavy
guark physics[7], and nonrelativistic plasma physi¢s].
(For a general discussion, see also [R@f) The basic idea is q:\,_ (Alb)
to fix a regularization for the effective theory, to then treat all

the parameters of the effective theory as adjustable, to calcyys equation is free of the usual discretization ambiguities.

late low-frequency observables in both the effective theorytl—0 see this, consider the difference between Stratonovich

and the more fundamental theory, and then to fix the paramsnq |t discretization conventions, which differ in how the

eters of the effective theory to obtain agreement. If we simy;, he e 1(qg)£ term is evaluated. That difference i is

ply fixed o(g) andU(q) to be their naive values, everything , - . : . 1
would match order by order in perturbation theory if it were 2QAt, which means a difference in thes “(q)£ term of

not for the UV divergences in the effective theory: if dia-

grams only involved low frequencies in propagators and ver- E(e‘l)-- "I (A2)
tices, then each internal line and vertex in the underlying 2 1 kAKE] -

theory would match up with each one in the naive effective

theory. The Only thlng we have to correct for are UV diver- In a Langevin equation such as our effective the(@)y this
gent graphs or subgraphs, where the correspondence woujgbuld not vanish in theAt—0 limit because£ is order
fail. But the previous discussion shows that such divergenceésm)-l/z and then so ig| by the equation of motiof6).° In

have the form of counterterms for(q), and so the matching ) :
of the two theories can be fixed by appropriate adjustment otthe case at hand, matters are different, becausg;k, and,
those counterterms. though Eqg.(Ala) implies that the time derivative will be
If we had a specific underlying theory in mind, we could order (At)~*2 v itself is perfectly finite as\t—0. So, in the
carry out this matching procedure by computing to two loopscase at hand, the differendé2) vanishes in theAt—0
in perturbation theory. The crucial point here is that such dimit.
calculation is unnecessary, and detailed knowledge of the
underlying theory is unnecessary, if we know that the equi-
librium distribution is Eq.(4). We can then immediately  Sinterestingly, this is a very special case of a general set of Lange-

solve the problem by simply requiring that we chods€)  vin equations considered in RéfL0].
so that the eqU|I|br|um distribution comes out rlght. GSee, for example, Secs. 4.7-8 of R&¥] for a review.

Returning to the Lagrangiaf0) corresponding to the  7See, for example, Sec. 4.6 of Ré2] for a review, as well
original Langevin equation, the only way we can changeas Ref.[3].

ACKNOWLEDGMENTS

APPENDIX A: THE LANGEVIN EQUATION
WITH INERTIA

v+o(qv=—VV(q)+e Xq)& (Ala)
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It is also interesting to sketch how this works in the pathghost loop. In frequency, the perturbative ghost propagator
integral formulation. Converting Ed5) directly into a path is of the form[ — w?—io(0)w+M?]~* (where | have sup-
integral using standard methddgives a path integral with pressed the indiceisj). The poles inw all lie in the lower
Lagrangian half complex plane. Almost any frequency integral corre-
sponding to a ghost loop can then be seen to vanish by clos-
ing the integration contour in the upper half plane. The one
exception is for loops with frequency integrals where the
(A3)  integrand does not fall off faster thanulas|w|—w, since in

this case we cannot ignore the contribution of the contour at

1 . . .
L=H(q+aq+VV)a*1(q+aq+VV)+L,7+5(0)tr|ne,

ana{ﬁijat% aijat+(e*1)ai[ekayjdk+(efl)ak,jqk iqfinity. This situation arises onlyifor ghost loops with a
single ghost propagator and a single vertex of the form
+Vj(eaViV) 17y, (A4)  —jwsa(q). The resulting frequency integral yields an effec-

_ ) ] ) tive interaction among thg'’s of
wherez and 5 are anticommuting Grassman fiel@gosts.

A diagrammatic analysis similar to that discussed in the main +o dw —iwdo __14

text produces no UV divergences because dhe 1q term "L 2n [—e’—iwd(0)+ M7 297

means that] propagators go likev* in the UV instead of (A8)
only @ 2. So diagrams converge faster in the UV than they S . _

did in the previous analysis. Resorting indices,j and not worrying about keeping track

Now let us check the equilibrium distribution fqr Since  Of additive constants in the action, this becomes
Eqg. (A1) formally has the same form as a generic first-order L1t (A9)
Langevin equatior(6) [the number of degrees of freedom v 2l

have simply doubled frorg to (g,v)], we can use resull4)  This is clearly time-reversal invariant.
for the Fokker-Planck equation for the probability distribu-

tion P(q,v,t), which translates in the present case to APPENDIX B: INTEGRATING BY PARTS

: . . WITH SYMMETRIC DISCRETIZATION
P=V,{T(e l)iaij[(e YiaP1+ (0v+V V)P

Consider a term in the action of the form
+ti{—viP}

= i[TV, V, P+, (0jP)]+ VoV V ,P—v- VP, ':f dtq-Vi(a), (B1)

(A5)  which can be naively integrated to yield a boundary term. |
will review how this naive integration is justified for the
symmetric time discretization used in this paper. In that dis-
cretization,| really represents

The equilibrium solution is

. 1
Peq(q,Q)=eXD{—f[%vz+V(Q)]]- (AB)

5 (B2)

d.+11t0;
1= (4,410, Vf 1—)

If we are only interested in the distribution opand notv

=@, we may integrate over all possible valuesgofind ob-  where r=t/At is an integer parametrizing the time steps.
tain Eq.(4). Now consider the Taylor expansion g, ;) — f(q,) about
Finally, | turn to my claim that this system has time- Q_E(q7+1+q7)/21
reversal invariant equilibrium correlatioqg|(t)g(0)). One
way to see this is from the path integral Lagrandiaof Eq. f(q,41)—f(q,)=Aq-V(q)+O((Aq)?), (B3)
(A3), which can be rewritten as
whereAq=q,,1—0,. SO we can rewrite

1 . . 1. .
= — -1 J—
L 4T(q+VV)(r (q+VV)+4Tqaq+L,]+ 5(0)trine I=E (0 1) F(q)+ O AQ))]. (B4)

1 i
+ ﬁﬁt(%qurV)- (A7) In a path integral, contributions to the action survive in the
At—0 limit if they contributeO(At) or more per time step.

As discussed in the main text, the total time derivative at thel e kinetic term determines the sizef to beO((At)*).
end can be thrown away if one is only interested in equilib-Therefore, theD((Aq)®) term in Eq.(B4) can safely be ig-
rium correlations. The rest df is manifest'y time-reversal nored, and what is left tr|V|a”y cancels between successive
invariant, except possibly the ghost teim,. (It is again  time steps, except for boundary terms.
important here that my path integrals are all implicitly de-
fined with symmetric time discretization.

For this system, the ghost term is actually fairly trivial, as 8think about the contributions of a potential terrfidt U(q)

can be seen by integrating out the ghosts. Consider the peAts,U(q). Such contributions are manifestp(At) per time
turbative expansion of the theory, and imagine an arbitrarygtep.
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The fact that the error wa®((Aq)?®) and notO((Aq)?) corresponding taL is simply the Fokker-Planck equation
(which would not be ignorabjein Eq_.(B4) depended cru- (14), which I will now write in the form

cially on the symmetric discretizatiog=(q,. 1+ d,)/2.

P=—H,P. (C9
APPENDIX C: EUCLIDEAN SCHRO DINGER EQUATION

FOR L, Both formulations, in terms off or L,, should generate the

same equilibrium physics—that is, the same time-dependent
We can directly determine the equilibrium distribution correlation functions. A crucial difference betweBl and

generated by the generic Lagrangig®) by transforming ¢y 'however, is that the operatér, is Hermitian, whileFl;

th_e path mtt;gral 'Et.o a Eluclldean Scdmgr;]e_r equa}tlon. is not. Now think about what it means to write down a path

Férst,arr?dcanig:ngnptﬁt |(rt1;(.egra ove(t) as a path integral OVer jnioqra| expression for the equilibrium probability distribu-

d eeL): tion Pe() =(8(q—0)) in terms of actions that run between

arbitrarily large times-7 and+ 7. The corresponding object
e~ (P9, (C1)  in the Schrdinger formulation is

Z,= lim N’f [H dp.dq,

At—0

(a(+Dle "7a)(qle " a(— D)

_ q,t0,-1 Ped @)= lim
S(p.a)=2 [—Ipf-(qf—quHAtHz( pT)] A Il *o(—)
(C10
(C2
H,(p.q)=Tpo X(q)p+u(q), (c3  WhereH can be eitheH or H,. What dominates the long-
time evolution operator exp(H7) is the equilibrium state,
1 which | will denote|ed). The difference betweeH; andH,
u=U-— —trine, (CH

is that the long-time evolution generatedfdy must be sym-

. _ . o metric in its overlap with the initial and final states, because
WhICh can be ch_ecked simply by QOlng the_ Gaussian mtegraﬁ2 is Hermitian. That is, in the larg@ limit,

tion overp. In this form, the path integral is well known to
correspond to a Schdinger equation

At

(a'le”""q")—(a’[eq)(eq|q"). (C1Y
[Ha(P.@)lwy(a.t)=—y(a.t), €9 H, is not Hermitian and so does not have this symmetry. In

where the subscript W indicates Weyl ordering of the operafact, we know from the usual Fokker-Planck equation corre-

torsp andg. The Weyl ordering formula we need in the caseSPonding toH, that the evolution is dissipative, and the re-
at hand is that sult of long-time evolution is independent of initial condi-

tions. So
1. .« .
[Pip;A(e) Iw=71Pi {Pj AlQ)}}, (C6) (q'le M7 q"y—(q’'|leq). (C12

where | have now introduced hats to emphasize phandq ~ In the case oH,, Eq. (C10 then becomes

are operators. Taking=—iV, the Schrdinger equation - - )
(C5) then becomes Ped @) =|(alea)|*, (C13

whereas foH; it becomes

(e HViVi+(o ™Y V. + E(U*l),‘ .
jyivi Hivit g i.]

—u] .
() Peg(@) = (dleq). (C14
| have used the symbal instead ofP in this equation One can now see that the equilibrium wave function repre-

because the equilibrium result fgr must be the square root sents the square root B, in the case oH, but P itself in
of the probability distribution. That is, we want the Schro the case oH;.

¢=[T

dinger equatio(C7) to have In any case, we can now uniquely determin@), and
V(@ henceU(q), simply by requiring that the equilibrium ampli-
o= (C8  tude (C8) be a solution of the Schdinger equationC7).
. . _ One finds
as its solution rather than exp¥/T). To understand this,
consider the original Lagrangidnfrom the discussion of the 1 1 T
path integral form of Langevin equatiorisdiffered fromL, u=-=(VV)o X(VV)= V(e 'VV)+ (o 1),
. eV s , 4T 2 4 '
only by a total time derivative. The Sclimger equation (C15

which precisely reproduces the res(@®5) for the L, that

9See, for example, Ref3] for a review of this fact in the present describes the Langevin equation, with my claimed redt
context. for FSUat
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